## E-626-A <br> Data Communication and Industrial networks (DC-In)

Lecture \#6
Multiplexing and Switching
Instructor:
Dr. Ahmad El-Banna

## Agenda

## Packet Switching

## MULTIPLEXING

## Multiplexing

- Several data sources share a common medium, with each source having its own channel
- Line sharing saves transmission costs
- More cost-effective transmissions
- Common on long-haul, high capacity links



## Frequency Division Multiplexing

- Requires analog signaling \& transmission
- Bandwidth = sum of inputs + guardbands
- Modulates signals so that each occupies a different frequency band
- Standard for radio broadcasting, analog telephone network, and television (broadcast, cable, \& satellite)


## System

Overview

(a) Transmitter

(b) Spectrum of composite baseband modulating signal

(c) Receiver

- Asymmetric Digital Subscriber Line
- Uses FDM to exploit 1-MHz capacity
- Reserves lowest 25 kHz for voice
- Use either echo cancellation or FDM to allocate two bands, a smaller upstream and larger down
- Use FDM within bands to split bit stream into multiple parallel bit streams - discrete multitone
- Range up to 5.5 km


## Synchronous TDM

- Synchronous Time Division Multiplexing
- Used in digital transmission
- Requires data rate of the medium to exceed data rate of signals to be transmitted
- Signals "take turns" over medium
- Slices of data are organized into frames


## Synch. TDM

System
Overview

(a) Transmitter


Time slot: may be empty or occupied
(b) TDM Frames

(c) Receiver

## Synchronous TDM and PSTN

- Used in modern digital telephone system
- US, Canada, Japan: DS-1(T-1), DS-3(T-3), ...
- Europe, elsewhere: E1, E3, ...
- DS-1: Data rate of 1.544 Mbps
- Uses PCM to digitize voice transmission at 8000 times/sec with 8 bits/sample $=64 \mathrm{kbps}$
- 24 channels x 8 bits/channel + 1 frame bit = 193 bits/frame with 8000 frames/sec


## Cable Modem \& Cable Spectrum Division

- Two channels dedicated on cable, one for transmission in each direction
- Each channel shared by number of subscribers using statistical TDM


## Cable Spectrum Division:

- to support both cable television programming and data channels, the cable spectrum is divided in to three ranges:
- user-to-network data (upstream): 5-40 MHz
- television delivery (downstream): 50-550 MHz
- network to user data (downstream): 550-750 MHz


## SWITCHING

## Switching Techniques

- Transmission beyond local area requires intermediate switching nodes
- Nodes concerned not with content but with movement of data
- Two technologies of switching differ in way data is switched from one link to another
- circuit switching versus packet switching


## Circuit-Switching

- Definition:
- Communication in which a dedicated communications path is established between two devices through one or more intermediate switching nodes
- Dominant in both voice and data today
- e.g. PSTN is a circuit-switched network
- Relatively inefficient
- $100 \%$ dedication even without $100 \%$ utilization


## Circuit-Switching Stages

- Circuit establishment
- end-to-end circuit established before any signals can be transmitted
- Data transfer
- point-to-point from endpoints to nodes
- internal switching/multiplexing among nodes
- Circuit disconnect
- deallocate resources dedicated to circuit


## PSTN

- Public Switched Telephone Network
- Four generic components
- Subscribers - devices that attach to network
- Local loop - link from subscriber to network
- Exchanges - switching centers
(end office - connected to subscribers)
- Trunks - branches between exchanges
(FDM or synchronous TDM)



## Circuit-Switched Node



## Circuit-Switching Node: Digital Switch

- Provides transparent signal path between any pair of attached devices
- Appears to devices as direct connection
- Typically full-duplex


## Circuit-Switching Node: Network Interface

- Provides hardware and functions to connect digital devices to switch
- Analog devices can be connected if interface includes CODEC functions
- Typically full-duplex
- Trunks to other switches carry TDM signals to provide links for multiple node networks


## Circuit-Switching Node: Control Unit

- Establishes on-demand connections
- handle and acknowledge request
- determine if destination is free
- construct path through switch
- Maintains connection while needed
- maintain time-division for connection
- Breaks down connection on completion


## Blocking/Non-blocking Networks

- Blocking
- network is unable to connect two stations because all possible paths are already in use (acceptable for voice only)
- Non-blocking:
- permits all possible connection requests because any two stations can be connected (and may stay that way for a long time)


## Switching Techniques

## Space-Division Switching

- Developed for analog environment, but has been carried over into digital communication
- Requires separate physical paths for each signal connection
- Uses metallic or semiconductor "gates"


## Time-Division Switching

- Used in digital transmission
- Utilizes multiplexing to place all signals onto common transmission path
- Bus must have higher data rate than the individual I/O lines


## Packet Switching

- circuit switching designed for voice
- packet switching designed for data
- transmitted in small packets
- packets contains user data and control info
- user data may be part of a larger message
- control information includes routing (addressing)
- packets are received, stored briefly (buffered) and passed on to the next node


## Packet Switching (2)



## Packet Switching (3)

- Advantages
- Better line efficiency - shared by many
- Can adjust data rates for different devices
- Prioritization option - high priority packets first
- Disadvantages
- Transmission delay in nodes - buffers \& processing
- Variable delays can cause jitter
- Overhead for address and network status info


## Packet Switching Techniques

- station breaks long message into packets
- packets sent one at a time to the network
- packets can be handled in two ways:
- datagram
- each packet is treated independently with no reference to previous packets
- virtual circuit
- a preplanned route is established before any packets are sent

| Circuit Switching | Datagram Packet Switching | Virtual Circuit Packet <br> Switching |
| :--- | :--- | :--- |
| Dedicated transmission path | No dedicated path | No dedicated path |
| Continuous transmission of <br> data | Transmission of packets | Transmission of packets |
| Fast enough for interactive | Fast enough for interactive | Fast enough for interactive |
| Messages are not stored | Packets may be stored until <br> delivered | Packets stored until delivered |
| The path is established for <br> entire conversation | Route established for each <br> packet | Route established for entire <br> conversation |
| Call setup delay; negligible <br> transmission delay | Packet transmission delay | Call setup delay; packet <br> transmission delay |
| Busy signal if called party <br> busy | Sender may be notified if <br> packet not delivered | Sender notified of connection <br> denial |
| Overload may block call <br> setup; no delay for established <br> calls | Overload increases packet <br> delay | Overload may block call <br> setup; increases packet delay |
| Electromechanical or <br> computerized switching nodes | Small switching nodes | Small switching nodes |
| User responsible for message <br> loss protection | Network may be responsible <br> for individual packets | Network may be responsible <br> for packet sequences |
| Usually no speed or code <br> conversion | Speed and code conversion | Speed and code conversion |
| Fixed bandwidth | Dynamic use of bandwidth | Dynamic use of bandwidth |
| No overhead bits after call | Overhead bits in each packet | Overhead bits in each packet |

- For more details, refer to:
- Chapters 8,10, W. Stallings, Data and Computer Communications, $8^{\text {th }}$ ed. .
- The lecture is available online at:
- Lecture notes are found at:
- http://bu.edu.eg/staff/ahmad.elbanna-courses/12133
- For inquires, send to:
- ahmad.elbanna@feng.bu.edu.eg

